3.2

\[G_{dB} = 60 \text{dB} \]
\[V_i = 3 \text{mV} = 3 \times 10^{-3} \text{volts} \]
\[G_{dB} = 60 \text{dB} = 20 \log_{10} G \]

\[3 \text{dB} = \log_{10} G \]

\[\Rightarrow G = 10^3 \]

\[\Rightarrow G = \frac{V_o}{V_i} \]

\[V_o = G \times V_i = 10^3 (3 \times 10^{-3}) \]

\[= 3 \text{ volts} \]

3.6

a) From Eq. 3.14,
\[G = 1 + \frac{R_2}{R_1} \]

\[100 = 1 + \frac{R_2}{R_1} \]

\[99 = \frac{R_2}{R_1} \]

Since \(R_1 \) and \(R_2 \) typically range from 1kΩ to 1MΩ, we arbitrarily choose:

\[R_2 = 99 \text{kΩ} \]

\[\Rightarrow R_1 = 1 \text{kΩ} \]

b) \(f = 10 \text{ kHz} = 10^4 \text{ Hz} \)

\[\text{GBP} = 10^6 \text{ Hz for 741} \]

\[G = 100 \]

From Eq. 3.15,
\[f_c = \frac{\text{GBP}}{G} = \frac{10^6 \text{ Hz}}{100} = 10^4 \text{ Hz} \]

This is the corner frequency so signal is -3dB from dc gain.

dc gain = 100 = 40dB. Gain at 10^4 Hz is then 37 dB.

From Eq. 3.16,
\[\phi = -\tan^{-1}\left(\frac{f}{f_c}\right) = -\tan^{-1}\left(\frac{10^4}{10^4}\right) = -\frac{\pi}{4} = -45^\circ \]

3.8

\[G = 1000 = 1 + \frac{R_2}{R_1} \]

\[999 = \frac{R_2}{R_1} \]

Selecting \(R_2 = 999 \text{kΩ} \), \(R_1 \) can be evaluated as 1 kΩ.

Since GBP = 1MHz for the μA741C op-amp and \(G = 1000 \) at low frequencies,

\[\text{GBP} = 1 \text{MHz} = 1000(\text{Bandwidth}) \]

\[\Rightarrow \text{Bandwidth} = 1 \text{ kHz} = f_c \]

If \(f = 10 \text{ kHz} \) and \(f_c = 1 \text{ kHz} \), we must calculate the number of times \(f_c \) doubles before reaching \(f \).
\[f_c \times 2^x = f \]
\[1000 \times 2^x = 10000 \]
\[\therefore x = 3.32 \]

Now the gain can be calculated knowing that for each doubling the gain decreases by 6dB (i.e. per octave)

\[
\text{Gain(dB)} = 20\log_{10} \frac{1000}{3.32} (6\text{dB})
\]
\[= 40\text{dB} \]

From Eq. 3.16,

\[
\phi = -\tan^{-1}\left(\frac{f}{f_c}\right)
\]
\[= -\tan^{-1}\left(\frac{10000}{1000}\right) \]
\[= -84.3^\circ \]