Ch 7: Sampling and Sampling Distributions

- Analysis of a population is often based on a random sample taken from the population.
- Simple random sampling, the most basic sampling technique, uses random numbers to randomly select \(n \) items from the population in an unbiased way.
- A point estimate is a number calculated from sample data to estimate a population parameter.
- Sample mean \(\bar{x} \) estimates pop. mean \(\mu \), while sample proportion \(\bar{p} \) estimates pop. proportion \(p \).

Sampling Distribution: The sampling distribution of a statistic (such as \(\bar{X} \) and \(\bar{p} \)) is the distribution of values taken by the statistic in all possible random samples of a given size.

Central Limit Theorems (CLT)

- CLT #1: Let \(X \) be a Normal population with mean \(\mu \) and standard deviation \(\sigma \). Then the sampling distribution of \(\bar{X} \) is Normal(mean \(\mu \), standard error \(\sigma / \sqrt{n} \)) for any sample size \(n \).
- CLT #2: Let \(X \) be any population with mean \(\mu \) and standard deviation \(\sigma \). Then the sampling distribution of \(\bar{X} \) becomes Normal(\(\mu \), \(\sigma / \sqrt{n} \)) as the sample size \(n \) gets large.
- CLT #3: Suppose that \(np \geq 5 \) and \(n(1-p) \geq 5 \). Then the sampling distribution of \(\bar{p} \) is approximately Normal(mean \(p \), standard error \(\sqrt{p(1-p)/n} \)).

Ch. 8: Interval Estimation

- Point estimates (\(\bar{x} \) and \(\bar{p} \)) don’t say how much uncertainty is associated with them.
- Interval estimates are preferable; they are stated with some level of confidence.
- A Confidence Interval (CI) has the form: CI = [Point Estimate \(\pm \) Margin of Error]
- \(n \) = sample size, can be set to achieve a desired MOE & confidence level.

Case 1: CI for population mean \(\mu \): large sample case (\(n \geq 30 \))
- Margin of Error = \(z_{a/2} (\sigma / \sqrt{n}) \). If \(\sigma \) is unknown, use sample standard deviation \(s \) instead.
- \(z_{a/2} \) = z-value corresponding to \(\alpha/2 \) area in the right tail of the Z distribution.
- \(1 - \alpha \) = Confidence level; \(\alpha \) (alpha) = Significance level.
- \(z \) = # of standard errors from the mean to give the desired confidence level 1 – \(\alpha \).

Case 2: CI for the population mean \(\mu \): small sample case (\(n < 30 \))
- Parent population from which we’re sampling must be nearly Normal in this case.
- Margin of Error = \(t_{df} (s / \sqrt{n}) \), where \(s \) = sample standard deviation.
- \(t_{df} \) = # of standard errors to go from the mean to give the desired confidence level.
- \(df \) = degrees of freedom = \(n - 1 \); as \(df \) increases, t distribution looks more like Z distribution.

Case 3: CI for the population proportion \(p \) = % of the population with a certain yes/no trait.
- Point Estimate = sample proportion \(\bar{p} \) = # of sampled items with the trait / sample size.
- Check that \(np \geq 5 \) & \(n(1-p) \geq 5 \) so that distribution of \(\bar{p} \) is approximately Normal.
- Margin of Error = \(z_{a/2} \sqrt{\bar{p}(1-\bar{p})/n} \)

Ch. 9: Hypothesis Testing (or “Significance Testing”)

- Null hypothesis \(H_0 \): \(\mu \) (or \(p \)) =, \(\leq \) or \(\geq \mu_0 \) (or \(p_0 \)) – often reflects the status quo.
- Alt. Hypothesis \(H_1 \): \(\mu \) (or \(p \)) \(\neq \), > or < \(\mu_0 \) (or \(p_0 \)) – often states what tester hopes to show.