Linear Algebra (continued)

We now investigate the eigenvectors associated to the eigenvalues found last time. First, consider $\lambda_1 = 2$. Let $v_1^T = (v_{11}, v_{21})$ be a normal eigenvector (any multiple of an eigenvector is still an eigenvector). It must satisfy $Av_1 = 2v_1$ or, row by row:

\[
\begin{align*}
v_{11} + 2v_{21} &= 2v_{11} \\
- v_{11} + 4v_{21} &= 2v_{21}
\end{align*}
\]

which are both equivalent to $v_{11} = 2v_{21}$. So, we may choose for v_1 any (non-zero) components that satisfy this relation, for instance $v_1^T = (2,1)$. Similarly, one finds for $\lambda_2 = 3$ the single condition $v_{21} = v_{22}$ and a possible eigenvector $v_2^T = (1,1)$. Now, we can return to the initial question that motivated our quest: "could we possibly transform A into a diagonal matrix by a similarity transformation?" To see why we can for this choice of A, we only need to rewrite our defining condition for eigenvalues and eigenvectors $Av = \lambda v$ for the each of the two above possibilities using a single interesting trick: if we set $\Lambda = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ then the multiplication of any matrix B by Λ on the right has the effect of multiplying the first row of B by λ_1 and the second row of B by λ_2 (check it and generalize it to the $n \times n$ case). Let us try this trick for the matrix B whose columns are v_1 and v_2. We find (check it!)

\[
AB = B\Lambda \tag{1}
\]

Now, it turns out that B is nonsingular (we will see a general principle for this). So, we can multiply both sides of (1) by B^{-1} to find

\[
B^{-1}AB = \Lambda \tag{2}
\]

which means that A is similar to the diagonal matrix Λ (or that A is diagonalizable).

Let us now consider the case $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$. The characteristic polynomial reads $p(\lambda) = (1 - \lambda)^2 + 1$ with roots $\lambda = 1 \pm i$. We can no longer hope to find real eigenvectors since Av would be real while λv would not! Indeed, we cannot even hope to diagonalize the matrix A with real numbers since that would mean $B^{-1}AB = \Lambda$ or $AB = BA$ with B and Λ real and Λ diagonal. But this would mean that the diagonal elements of Λ would be eigenvalues and we cannot have any others than those already found since the characteristic polynomial of a 2×2 matrix is quadratic. However, we can diagonalize A with complex B and Λ.
A third interesting case is given by \(A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \). The characteristic polynomial now reads \(p(\lambda) = (1 - \lambda)^2 \) with double root \(\lambda = 1 \). The trouble here is that the equation \(Av = v \) only has a one-dimensional family of solutions, those proportional to \(v^T = (0,1) \). So, the trick \(AB = BA \) requires that the two columns in \(B \) be proportional. Thus, \(B \) would be singular and one cannot diagonalize \(A \) in \(\mathbb{R} \) or \(\mathbb{C} \).

Homework

1. Find \(B^{-1} \) for \(B \) in (1) and verify (2) directly.

2. Diagonalize \(A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \) with complex \(B \) and \(\Lambda \).