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ABSTRACT

Most theoretical and formal arguments about ratfideterrence assume that war
is a game-ending move. In the asymmetric casdothe of deterrent threats then rests
on the relative merits of war and submission. R#éisfenformed rivals ensure that
immediate deterrence always succeeds although @ateterrence may not. Does this
strong result survive the repetition of the staddare-shot deterrence game? We show
that an unbundling of the war outcome, and theltiagupossible recurrence of a
challenge to thetatus quo , changes the very nature of dgtethreats and can lead to
the failure of immediate deterrence. If $tatus quo carchalenged repeatedly, it is
rational, in case of challenge, for the rivalshireaten probabilistic escalation of the
crisis to war with the following consequences: ¢hallenger will challenge th&tatus
guonow and then; the defender finds it rational ®gteat least for a while; the resulting
recurrence of challenge, resistance, and escalegiotead the rivals tthreaten, with

some likelihood, wars that are long enough to hasteophic for all parties.



INTRODUCTION

Most theoretical and formal arguments about ratfideterrence assume that war
is a game-ending move. The logic of deterrent tréeen rests on the relative merits of
war and submission, and perfectly informed rivail mever fight, although the defender
may fail to deter a challenger from upsetting stedus quaf she cannot credibly
threaten wat. Perfectly informed rivals therefonsuge that immediate deterrence
always succeeds although general deterrence mafpoes this strong result survive the
repetition of the standard one-shot deterrence g@aiMe show in this paper that an
unbundling of the war outcome, and the resultingspgme recurrence of a challenge to
thestatus qug changes the very nature of deterrent thesatsan lead to the failure of
immediate deterrence. If tls¢atus quo can be challengeeateglly, it is rational, in
case of challenge, for the rivals to threaten esicad of the crisis to war with some
probability. Equilibrium play therefore "keep(sktenemy guessing” (Schelling,
1960:200) about the timing and duration of war.t Bhile Schelling's "threat that leaves
something to chance" appeals to the irrationapslie of a state that loses control, our
fully informed rivals wield the probabilistic threaf war strategically.

Our approach is closely related to the work ofatagand Kilgour (1993, 1998,
2000) and Zagare (2004) in its focus on asymmedsterrence and the conditions for
credible general and immediate deterrence. ButZagad Kilgour's conclusions about
general deterrence rely on games with under-spécitionflict” endgames. As the
authors themselves point out, "game theoretic nsoa@&, in essence, empty vessels: they
can be filled with a wide variety of substantiveidls," (Zagare and Kilgour, 2000:71). In
particular, the "conflict" outcome could mean ttreg protagonists fight a brief and
limited decisive war, or it could mean that thegage in a protracted battle for territory

or influence. Conflict could mean Operation De&tdrm's forty-three days of war, or it



could mean the hundred months of deadly battle @atwraq and Iran between 1979 and
1990. But war could also be the recurring outcoffree mattern of challenge and escalated
threats, interrupted by long periods of unresola¢ency, as in Peru's long standing
border dispute with Ecuador. By allowing our rivedsengage in several rounds of
conflict, back away from altercation, return to tatus quosubmit, or repeatedly
challenge, we also allow them to generate theetyadf conflict outcomes that are
observed in real-world settings. Importantly, wedfthat these outcomes also emerge
from rational play. But if the repetition of theaatlard asymmetric deterrence game
allows for the formal representation of protraatedflicts, it also upsets the calculus of
perfect deterrence.

Our emphasis on asymmetric deterrence means thahbundle the conflict
outcome in the case where a clear defender enjpyigathat is coveted by the
challenger. As Zagare and Kilgour point out, sushe-sided deterrence relationships
have obvious empirical and theoretical import" gZiee and Kilgour, 2000:135).
However, in our model, the rivals switch roleshiétchallenger wins. Actual possession
of the prize is what determines a player's role game that repeats indefinitely, and
each party gets a chance to deter the other fratheciging or escalating the conflict
when endowed with the contested asset. As a reftile unbundling of the conflict
node, we identify a vast class of rational strasgin the form of subgame perfect
equilibria (SPE), with the following propertiés:

1) The challenger will challenge teatus quo with somelyability;

2) The defender finds it rational to resist astdar a while;

3) The resulting recurrence of challenge, rest#aand escalation can lead the

rivals to engage in a conflict that lasts so |tmaf its cost outweighs any benefit

the winner may enjoy once the dispute is finalhgro In other words, the rivals
threaten, with some likelihood, wars that aregglenough to be catastrophic for

all parties3



The very possibility of ruinous warfare in equiliom has behavioral
implications. If the result of equilibrium play cée catastrophic, some attention should
be paid to the impact of the rivals' choice oftetgg on the likelihood of such outcomes.
The vast class of SPEs described above involvdsapilistic moves, with an array of
possible equilibrium choices for the challengere Thallenger can forgo challenge
altogether, ensuring the success of general dataréut he can also challenge with
varying degrees of assertiveness that find measuhe chosen probability of challenge
at thestatus qua However, given the defender's equilibrresponse to challenge, the
defender finds himselhdifferent between accepting sit@tus quo  dadlenging it.
Thus the defender's deterrent threat of escalatiotead to general deterrence success.
But if general deterrence fails, the defender'parse seals the probabilistic failure of
immediate deterrence. So how should the challelngleave? He could challenge
aggressively, implement a timid policy of infreqtiehallenge, or forgo challenge
altogether. All options are equal from the standar@ntediscounted utility perspective.
Yet, the various strategic choices available tocthelenger determine very different
futures. An aggressive stance may lead the deféodend over the prize sooner, but it
could also lead both parties to accumulate warsdaséxcess of the value of the prize. A
balanced evaluation of these realizations canmmfitve challenger's choice of strategy in
equilibrium.

We begin with a brief literature review and follevith a conceptual discussion of
asymmetric deterrence in a one-shot game, focusipgrticular on the interpretation of
the end game. We then unbundle the final nodeseobhe-shot game to allow for a
process of possibly repeated challenge and prettaminflict, examine its equilibria and
discuss the implications of this unbundling in themulation of deterrent threats.

Finally, we discuss our equilibria in light of theionsequences. As we discuss strategy
and outcomes, we highlight the parallels betweerfamal approach and the history of

real world conflicts.



A BRIEF LITERATURE REVIEW

Our work finds root in two strains of the vasetature on war and peace: firmly
set in the literature on rational deterrence,sbalncovers a possible strategic driver of
enduring rivalry. Our subject is rational deterremnt a context where the rivals can
repeatedly challenge tlstatus quo and escalate the cvigdind that, in equilibrium,
the protagonists can adopt strategies that, impieade would generate behavioral
patterns observed between enduring rivals. As smatwork offers a purely strategic
motive for recurrent armed conflict, although thed®ling of enduring rivalries is not
our central purpose. In a rare attempt to modeligng rivalries game theoretically,
Maoz and Mor (1999, 2002) describe rivals that geatheir preferences over future
game outcomes as they learn about the opponeptbitiies? Recurring conflict results
from the rivals' changing satisfaction with theremtstatus quoand the rivalry comes to
an end when the protagonists' moves confirm trediefs about relative capabilities. To
generate their enduring rivalries, Maoz and Moi9@,2002) examine the non-myopic
equilibria of a matrix game (Brams, 1994). As autetheir model cannot support a
discussion of rational deterrence and the cretytoli threats since, as Zagare and
Kilgour (2000) forcefully argue, rational deterren@quires that the players implement
subgame perfect equilibrium strategies. By contrastshow that the very credibility of
threats can lead rational rivals to fight occaslignahile the conflict festers unresolved
for much of the time, a pattern that is charactierts enduring rivalries.

As Lemke and Reed (2001) and Sartori (2003) pmunt“the theory of enduring
rivalries is as yet poorly developed,” (SartoriD2@0). But much work has been done to
uncover the causes of rivalry as well as thoseléaat rivals to fight. While definitional
details vary, the empirical importance of endunivglries is well established. Gochman

and Maoz (1984) find that over half of all dispubetween 1816 and 1976 involve rivals



that have engaged in conflict with each other ntloa@ seven times. Importantly,
enduring rivals are also more likely to fight ($8eertz and Diehl, 1993 and 1998,
among others). Domestic and systemic shocks, itotgat dispute, and power parity are
frequently found to be empirically significant puesors to war among enduring rivals,
although Lemke and Reed (2001) offer contradicemigience. Huth and Russett (1993)
and Huth (1996) find that relative capabilities aapthe likelihood of war once a
military threat has become manifest. Heldt (19898wing upon diversionary theories of
war in which leaders fight to divert attention fralomestic issues that could cost them
their jobs (Downs and Rocke (1994), Smith (199)js that domestic dissatisfaction
increases the likelihood that states involved teratorial dispute will use force.
Vasquez (1996) finds that the dyadic war over tignyiis one of two empirically relevant
paths to war for enduring rivats.

Our model, which assumes that a defender holdeajogs a prize that is coveted
by the challenger, mirrors the stakes involved faratorial dispute. As such, it can be
viewed as uncovering a strategic path to recungatlic fighting over territory. But it
also impacts the possible interpretation of datemsturing rivalries. For example, Huth
and Russett (1993), in a direct attempt to linkedeince to enduring rivalry data,
interpret intervals between militarized conflict@eriods of general deterrence success.
A war episode is then an isolated incidence ofrdetee failure, rather than the
manifestation of an overarching deterrence stratiegtyrequires occasional escalation of
the conflict to war for the very threat of costighting to be credible. Our model predicts
possibly long periods of unresolved latency dukirigch the rivals avoid confrontation
while keeping the threat of escalation alive. Buieivals between fights do not signal
general deterrence success in our model. Ratler |émgth and quality reflect strategic
decisions on the probability of immediate detereefaslure.

While the model we develop captures some aspéetsduring rivalry, our

primary goal remains a discussion of rational detere in a context where the war



outcome is unbundled. Powell (2003) notes that trfoysnal studies of the causes of war
treat the decision to go to war as a game-endingerffoHowever, our effort to unbundle
the war outcome is not unique, although our disoassf rational deterrence in this
context is an innovation. Indeed, following Wag(2000), and motivated by his claim
that the treatment of war as a game-ending assamgtian only lead to misleading
conclusions,"” a number of authors have unbundledwdr outcome to allow for intra-
war bargaining. These models typically focus on asa source of information. In
Filson and Werner (2002), the attacker is uncedhmut the defender's military
capability and learns from the outcome of wars fdughe rivals in Smith and Stam
(2001) update their beliefs about the likelihoodwrining a fort as they battle for these
forts, one at a timé. Powell (2003) models war assily process during which states
can bargain while running the risk of military @pbe if they fight. The model assumes
that one state is uncertain about the other's ests@nd likelihood of military collapse.
An interest in intra-war bargaining has been theary motivation for the
unbundling of the war outcome. And, in light of thelespread belief that rivals that are
fully informed should always settle their differescpeacefully in equilibrium (Powell,
1990 and Fearon, 1995), most of these models asswm@plete informatiod.Yet
enduring rivals, engaged in disputes that canftestecades, should surely get to know
each other. Our analysis assumes that the rivalfily informed about each other's
priorities and capabilities, thus ruling out impt information as the cause for
deterrence failure. Few authors have attemptedtam war between fully informed
rational actors. Slantchev (2003) and Garfinkel Skdperdas (2000) are notable
exceptions.Garfinkel and Skaperdas (200@onstruct a two-period model of reseurc
allocation in which each party builds an arms sta#t decides on settlement or war. But
arms built in the first period are assumed to detraynatically if not used, and war is a
game-ending move. Under these conditions Garfiakdl Skaperdas (2000) find that

fully informed rivals rationally go to war. Slanth (2003) describes fully informed



rivals that can bargain or fight and identifies SREwhich the rivals agree to a
settlement that is delayed by a few turns of waSlantchev's equilibria the rivadgree
to go through several turns of war under the thoéatversion to extremal equilibria.
Since war does not mark the end of the game, S$lamtenbundles the war outcome.
Slantchev's objective is to demonstrate the axigt®f inefficient equilibria
despite the fact that the rivals are fully infodné is not to discuss the nature of
deterrent threats, which is our purpose here. BEhdgretical discussions of deterrence
often revolved around the special issue of nude#grrence as in Schelling (1960),
Snyder (1964), and Jervis (1984). But broader agagres abound from the classical
work of Morgan (1977), to Ordershook (1989), Wagi€92), and Zagare (1990). The
more formal analysis can be traced to Brams anglokiil (1988), Langlois (1991),
Morrow (1989), and Powell (1987, 1990), among athand more recently to Zagare and
Kilgour (2000) and Zagare (2004). O'Neill (1989949and Morrow (2000) also offer
comprehensive reviews of the vast game theorédiature on deterrence. These authors
identify imperfect information as the source of isufiate deterrence failure. But the
recurring nature of conflict, while clearly recoged in the empirical literature, is never
associated with the rational failure of deterrentst. we will show that fully informed
rivals, engaged in protracted conflicts, threatan probabilistically. Their willingness to

actually fight some of the time is what makes thtedent threat credible.

ONE SHOT ASYMMETRIC DETERRENCE

The game theoretic logic of deterrence hinges ercthdibility of retaliatory
threats in the face of an assault by the challengehe classisequential asymmetric
deterrencg game illustrated in Figure 1 belowcthalenger has the first move and may
wait, staying with thestatus qudSQ), or challenge. The defendetumm, at node 2, can

resist if challenged or submit, ending the gam&Bf). Faced with a resisting defender,



the challenger, at node 3, can escalate or back deading the rivals to final outcomes
war (WR) or backdown (BD). Payoffs are normalizeddlows: at SQ, the challenger
gets nothing (0) and the defender keeps the ptigeltile at SB the challenger gets the
prize (1) and the defender loses it, possibly inogra cost— e < 0 . At BD the
challenger incurs an "audience" cost-efa < 0 whiledb&ender enjoys a benefit
b > 1. And at WR challenger and defender pay the costewfiict — ¢ < 0 and
— d < 0 respectively.
<< Figure 1 here >>

The challenger's preferred outcome is to see tfender submit to his challenge, while
the defender ranks a backdown by the challeriger ) t theaop of the list. Escalation
to war is less desirable than ttatus quo  for each opthgers. In this one-shot
approach, the question of whether escalation tosvarcredible threat lies in its value
relative to submission for the defender, and baekdfor the challenger. When the
parties prefer war to backdown or submission, regEy (c < a andd < e ),
deterrence prevails because the threat of waedilde.

The logic of rational deterrence if conflict isttvorst outcome for the challenger
(c > a)relies on a somewhat negative deterrence rdauhis case, the defender should
resist a challenge because the challenger will baek down. So, knowing that the
defender will resist, and that backdown is the itadle next rational step, the challenger
should stay with thetatus quo ., as Zagare and Kilgour (2000:142) point out, the
status qu@revails because the challengeannot deter the defdrade resisting.
Nevertheless, success of both general and immedkdderence is the outcome. General
deterrence fails in the asymmetric game of Figus@der one set of circumstances: the
challenger can credibly threaten escalatior: (a )evtiie defender prefers to submit
than to fight ¢ > e ). In this case, immediate detereesgcceeds since the rivals do not

fight, but general deterrence fails. Similar costuas are reached if the basic



asymmetric deterrence game is enhanced by addhitglyi many layers of escalation, as
discussed in Zagare and Kilgour (1998) and Zagz0e4).

In the one-shot framework the payoffs associatihl a¥l final outcomes should
capture the expected long run value of that outcémparticular, in a model of
asymmetric deterrence, outcome SB should valubahding over of the prize from
defender to challenger in perpetuity. The intemgdren of the payoffs at WR is more
complex, however. Costs ¢ andd  may represent thecteg value of the possible
future occurrences should war break out: perhadpsts for some time, is interrupted by
a temporary backdown by the challenger, can beavdost with some likelihood, and
can be followed by a future in which the prizeaswwed or lost. The cost of fighting, the
number of turns of war and the likelihood of wingithen determine how costly it is to
reach state WR. As endgames go, the substantiterdasf WR is under-specified in the
one-shot game model.

Consider, for example, the long standing bordsputie between Ecuador and
Peru: it finds its roots in the creation of eaclthafse states in 1830 and 1829, and it
survives the 1942 Rio Protocol that was to deliadla¢ border between the two states.
Peru and Ecuador fought for four months beforeeiggeto the Rio Protocol. But the
Protocol's demarcation was incomplete, and Ecuagjected its validity, claiming
extensive territory in the Amazon basin. In Jagud#81, Peru bombed Ecuadorean
outposts at Paquisha, killing two and wounding weellhe military phase of the
Paquisha incident lasted seven days (Krieg, 198&)anuary 1995 Ecuador and Peru
battled in the Cenepa valley for thirty-four dagigiming as many as 600 lives (Weidner,
1996). And while the 1998 Brasilia Presidential Astgned by both parties, resolves the
Rio Protocol's border impasse, the "risk that eitdwintry will choose to use military
force to achieve territorial objectives(...) is fewm eliminated.” (Simmons, 1999:21).
How could all this information be absorbed in agpgn"war" state WR? Clearly, such

an effort would erase the dynamics of the conftigh, the parties of their ability to



decide when to fight, and rule out any strategittent to the course of events.
Unbundling the events of end node WR allows foradgit brinkmanship. The
protagonists can decide how much they will fighdtifall, and to fight again if peace does
not bring agreement But these possibilities camgbaadhe calculus of rational

deterrence.

UNBUNDLING THE CONFLICT OUTCOME:

GAME STRUCTURE AND PLAYER OBJECTIVES

In order to unbundle the events that are impji@tintained in the one-shot
conflict outcome, we repeat the game of Figurd it.i$ rational for the challenger to
wait repeatedly, no crisis develops and genera@rosice succeeds. But should the
challenger choose to challenge #tatus quo , whateveritteri of play, the following
developments become possible:

» The defender could submit, handing over theeptazthe challenger. This would
mark the dawn of a nestatus quo in which challenger becodstsnder, and defender
becomes challenger. The rivals then choose strategying a new hat.

» The defender could resist, forcing the challengealecide between escalation to
war and backdown. Neither decisions is final: # tthallenger escalates the conflict, the
rivals fight for one turn. Having incurred the co$tone round of fighting, the challenger
can choose to return to teatus quo or to challenge tifender once again, potentially
risking a new turn of war if the defender resifitthe challenger backs down when the
defender resists, the challenger incurs an audieoste the defender gains from this
temporary victory, and the rivals return to #tatus quo. islthen up to the challenger to
challenge again or to wait. If the challenger watte defender reaps the rewards of

possession for one turn. The challenger can wp#atedly, letting the defender collect
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rent over and over again. But, at any time, thélehger can choose to challenge the
status quaagain.

Figure 2, below, is aiterated versiéh of the game of Figurand it
distinguishes between four states: skegus quo  (SQ), baghkduy the challenger (BD),
war (WR), and submission by the defender (SB). déx@sions made by the protagonists
inevitably lead them to one of the states of thaga

(1) SQ, thestatus quomarks the beginning of the ganikis visited

anytime the challenger waits at the previous turn;

(2) BD is visited whenever the challenger backsml@after a round of

challenge and resist) at the previous turn;

(3) WR is visited whenever the challenger escalééer a round of challenge

and resist) at the previous turn.

(4) SB is reached if the defender submits aftérgehallenged. SB is also the

status quaf a new game in which the players switch rolaghis new game, our

rivals are faced with the same opportunities drallenges. But now the prize has
changed hands, and the challenger will take onié¢fender's role, while it is the
once defender of tretatus quo that can challenge the nate of affairs.

Payoffs associated with each of the four statesmalicated in Figure 2, below,
with the challenger's payoff listed first:

<< Figure 2 here >>
When one of the three role preserving states (3 .a8d WR) is reached, payoffs are
made for the current period only. By contrast, wBé&nis reached the payoff to each
player depends on what each party expects the tatligr at the outset of the new game.
Thus, the new challenger's payoff becomes whaté¢fenderexpected when still in
possession of the asset at SQ, whilenthe defenpleyoff corresponds to the current
challenger's expectations at SQ. We will elabooatéhis idea when discussing equilibria

of theiterated game. To facilitate comparison of the pé&g/of the one-shot game of
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Figure 1 and the correspondiitgrated game of Figurey@ examine the payoffs of the
iterated game in the special case where the defemglsubmitting, gives up the
contested asset forever. In this case, the pay&Bas the discounted future value to the
rivals of the defender's submission in perpetuity.

To adapt the payoff structure of the one-shot gmnibeiterated game, it is
necessary to distinguish between per-period payoifsaccumulated future payoffs.
Moreover, in thaterated game, future payoffs must bedalisted. Let the discount
factor bew with0 < w < 1 . The payoff at SB is an accunadatum of future payoffs
while the payoffs at SQ, BD and WR are one-periagoffs. To make these payoffs fully
comparable, we pre-multiply any current payoff (by- w). So, listing the challenger
first and with reference to the payoff structurele one-shot game of Figure 1grze-
periodwait by the challenger yields player paydffs— w) < 0,1 >  thk challenger
never challenges and always chooses to wait, thee obtain the discounted value to
infinity of per period payoff§l — w) < 0,1 > or

S(l—ww' <0,1> = <0,1>
t=0

Similarly, aperpetual backdown would yieldk — a,b > , ancpbarpetual war webul
yield < — ¢, —d > , whileeach visitto BD and WR yields payoffs
(1-w)< —a,b>,and(l —w) < —c¢, —d > , respectively. By the same logic, if
the protagonists expeperpetual submission at SB, they éxmgoffs < 1, —e >
with per period payoffs at SB readifig— w) < 1, —e > . Given #upectation at
SB, it is of interest to compare the predictionshef one-shot game to those of our
iterated game.

In the one-shot game, general deterrence prevhis the defender can credibly
threaten to escalate the conflict to war becausdsaass costly than submissiahx< e
It is well known that repeating the equilibriumtbé one-shot game provides a perfect

equilibrium of theiterated gameSo general deterrence can succeed int¢nated game
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as it does in the one-shot gamé i ¢ . But what dlessmean?In theiterated game,

d is the cost operpetualwar to the defender while is the cost pérpetual submission.
General deterrence can then succeed if the def@nefers to fighforever than to give
up the prize in perpetuiit  Thatstate would have such preferences seems unéikely
suggests ruling out this payoff structure in itieeated amg of Figure 2. Indeed, in the
logic of aniterated game, the parties can consider fightor a limited time, and it is the
cost oftemporary warfare that is meaningfully comparedIteraative outcomes. By
accepting to fight, if challenged, the defender kald on to the asset for longer, getting
rent every time there is a lull in the hostiliti®& fighting the challenger hopes to get the
defender to hand over the prize by submitting.il\&ll, fighting could bring about a
positive outcome for each rival. Even if tiper period  oofstvar exceeds theer

period cost of submission for the defend@r,— w)d > (1 — w)e, alimited war can still

be preferred to a long submission. Indeed, by doggfo fight for some time, or
intermittently, the defender hopes for the chaltgtggoccasional backdown with the
subsequent return to te&atus quo antdetting him enjoy possession of the priaad it
seems reasonable to assume pleapetual war is worseuh@mdering the prize
forever ( > e¢). This is the payoff assumption thatwitk make in what follows by
settinge = 0 for simplicity, whilel > 0 12 With the payoffrstture of thdéterated game
worked out, we will now be able to examine SPE®efterated game that give state SB
richer strategic content.

But first, the rival's objective must be spellad.cChallenger and defender are
standard expected discounted utility maximizers@wabse strategy accordingly. To
express the players' objectives, consider a sequar@ayer moves through the graph of
Figure 2: Given any current decision node of thagpbr such a sequence is valued
according to the future payoff states visited.,ll&otes the payoff state visited at turn
then a payoff path is a sequence- { |, $,.$ ;..}S Such a segoeuld cycle within

the graph of Figure 2, visiting states SQ, BD anid Wdefinitely, or it could end with
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the players switching roles in state SB. Each paldr payoff path is the result of a
sequence of decisions made by the players. Forgrapathc = { BD,WR SQ SB
viewed from decision node SQ1, would result from skequence of choices "challenge,
resist, backdown, challenge, resist, escalate, wladtlenge, submit,” with the players
switching roles at SB.

Player: 's discounted value for a payoff path efneéd as

Vo =Ui(S) +wUi(S) + .. + W U(S) + .. = inUi( 9 (1)

For example, path = { WR SQ $B has discounted valudédéfender:
VE=(01—-wb—wl—wyd+u*(1—wl+w(l—wEp(SB)

where the defender's expected payoff at SB is dlyefpshe expects as challenger in the

newstatus quoThe standard formulation of playgeis expected utility, viewed from any

decisionnode N, is then

Ei(N) = 2 P(a)Vy (2)

where the sum is taken over all possible pathsloviahg N, andP (o) is the probability
that patho will be traveled according to the playstrategies (see Fudenberg and Tirole,
1995, Chapter 5). Given objectives and payoffgtieiterated game of Figure 2, we now
turn to a class of SPEs in which the defender implas a strategy thabuld lead to
general deterrence success, but seals the pratiadidiilure of immediate deterrence in

case of challenge.

THE FAILURE OF IMMEDIATE DETERRENCE

AND THE RATIONALITY OF WAR
The logic of asymmetric deterrence leads us to ex@ithe case where one period
of war is more costly to the defender than subngtfor one period(( — w)d > 0) . But

this does not mean that, in case of challengedrgdible challenger, the defender
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necessarily submits. In fact we analyze below alevhlass of equilibria in which
challenge is followed by resistance by the defeh@eause the challenger may respond
by backing down. Interestingly, occasional backddwyrihe challenger will be found
rational whether he prefers to fight than to bacwnd (¢ < a), or not ¢ < ¢ ). Of course,
because repeating the equilibrium of the one-shotayis a SPE of theerated game, itis
rational for the challenger to stay with ttatus quo foneie: > a, and for the
defender to submit immediately in case of challehge< a. But, in a whole class of
equilibria, aggressive players do not conform hkhavioral patterns inherited from
the one-shot game: The challenger can seek to foecdefender to eventually submit
even when war is costly and< ¢.  And the defendermatlcooperate in her own
submission although she knows that the challengefers to fight than to back down
when she resistg < a ).

More precisely, a whole class of SPE involvesljirmalibrated threats and
counter threats based on the probabilistic intestto challenge, resist and escalate by
challenger and defender. These equilibria haveuatste that depends on the
relationship between the challenger's audienceafdsickdown and the cost he incurs
by fighting for one period. We describe our claksquilibria with reference to the
decision nodes of Figure 2 above, examining eac¢heofival's rational decisions as the

conflict evolves.

The Challenger's Decision to Challenge and to Bseab War

In general, player decisions at each turn couleeddmn the entire prior history
of play. But, as Figure 2 illustrates, many differaistories can lead the players to a
given state, and once in that state the playerayaiace the same set of possible
decisions. It is therefore natural to investigatategic behavior that depends only on the

current "state of the game," regardless of anyiBpgxior history. Such strategies are
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called Markov strategies because they yield a patiEplay akin to a Markov chain. A
Markov perfect equilibrium (MPE) is simply an egobilum in Markov strategies that
holds at every state of the game. Focussing on dgplkerfect equilibria has three main
advantages: MPEs only require a specification efplayers' intentions at each of their
decision states and they are relatively easy tstooct; MPEs are also SPEs, meaning
that a player cannot benefit by deviating in any Wwam an MPE strategy; MPEs are in
fact representative of a wide class of equilibnce "extremal equilibria” (the worst
SPEs for each player) are usually constructed aEav®

In the class of MPEs that we are interested mgctrallenger behaves as follows:

At SQ1, the challenger challenges with probabdity

with probabilityt ifa<c
At BD1, the challenger challeng({s (3a)
with probability 1 ifa>c

with probability 1 ifa<c
At WR1, the challenger challeng{s (3b)
with probabilityt ifa>c

At SQ1, the starting point of the game, and thetpaf return if the challenger
decides to wait after waging war, our challenger caoose to wait or to challenge
probabilistically. Probabilityy can be as smalklas challenger wants, and it has an
upper bound that depends on parameter vafties. chaikenger can therefore choose
from a range of strategic options, from the tinddhe tough. Our model therefore
suggests that the initial challenge aftatus quo  can beeadegic matter rather than the
result of serendipitous events that culminate terti@ine state action. China's military
philosophy, with its emphasis on controlled offeesaction (Johnston, 1995), could be
an illustration of such strategic thinking. Syrigteposal to implement an "openly
protracted struggle" to weaken Israel prior todbhee 1967 war also suggests a

strategically chosen frequency of challenge orptire of Arab states (Reiser, 1994:78).
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The relationship between the challenger's peodeaudience cost of backdown
(1 — w)a and the cost of war in each peridd— w)c ~ marks a ctiboaak in rational
behavior. A high audience cost of backdown>(¢ ) nnatds the challenger's
bellicosity when war has broken out, but ensurasttiestatus quawill be challenged
for sure after a costly backdowh. By contrasy sudience costs relative to the cost
of fighting (@ < ¢) prompt an aggressive strategy in weith the challenger always
challenging again after a round of fighting at WBIit, after a backdown, the challenger
can rationally adopt a flexible stance, decidinghallenge again infrequently by
choosing a small . However, it is also rationaltfe challenger to keep the defender
under pressure at BD1 by picking a probability ledltenget as high as 1.

It is hard to evaluate a state's audience cdsackdown. However, the relatively
low cost of the limited militarized disputes betweecuador and Peru in the Amazon
basin suggests that backdown may have been ptiitroare costly than war for
Ecuador. Ecuador's unilateral 1960 declarationtti&aRio Protocol was null and void
was confirmed at the outset of all the militarizeshfrontations with Peru until 1995, and
many border incidents during the period reaffirme@tiador's ongoing challenge of the
Rio Protocol. But in only three cases between 1601995 did the rivals escalate the
conflict to wars that remained limited in time anctost (Huth, 1996, Simmons, 1999).
Ecuador's bellicosity was contained once war bike but especially after the Paquisha
incident of 1981, challenge after backdown wasiptst. This is the type of behavior
that our model would suggest if audience costheachallenger are high relative to the
costs of war.

Table 1 below provides ranges for the challengdraces at SQ1, BD1 and WR1
depending on parameter values We set the followargmeters: discount factor
w = 0.99, the defender's one-period benefit from challemgekdown

(1 —w)b =0.01x 2, and the defender's one-period cost of (far w)d = 0.01x 2
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We also examine the range of rational challeng@aWebs for various values of
parameters and 16
<< Table 1 about here >>

If the challenger's audience cost of backdownwaadcosts are similar, little
restriction is put on probability in equilibriurAs illustrated in Table 1, limits to the
challenger's rational propensity to aggress at &@& when war is costly relative to
backdown or vice versa. Explanation for this lieshe impact of the challenger's choice
on the defender's decision to resist. As we wél selow, the challenger does not need to
challenge with high probability at SQ1 for the defer to submit at BD2 or WR2 with
high probability Wheda —c \ is large. The upper bouads, when they fall short of 1,
represent hostility levels that lead the defertdeyive up, choosing to submit with
certainty at BD2 or WR2. But as a result, the @wadker will challenge with certainty at
BD1 after a costly backdown (challenge at BD1 when 4), but he can be more flexible
if backdown is less costly than battle (challengB@1 whena = 1) . By contrast, having
fought a costly war, the challenger challengesragatih certainty at WR1 (challenge at
WR1 whena = 1), but remains more flexible if war is lesstty than backdown
(challenge at WR1 with probability when= 4)

The challenger can choose from a wide array afeggies in equilibrium. In
particular, he can always choose never to challguigkings = 0. But he can also
challenge thetatus quo to varying degrees depending ohidtery of conflict. His
choices will determine the defender's responsejfdrechooses to challenge at all, the
defender will resist with some probability. In tfaee of a resisting defender, the
challenger must anticipate a possible escalatigheotonflict to war. At SQ3, BD3, and

WR3, the challenger escalates with probability

- o w(l-t)+b(1-(1-s)w)
9=q= w(1—t)+(b+d) (1—(1—s)w)

- . b(1—-(1-s)w) .
1= 2= 0ot (1-(1_s) ifa>c (4b)

ifa <c (4a)
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q is therefore a probability that varies with thaldnger's strategic choice of andl’ .
Numerical values fog , are given below, settingdisgount factow = 0.99,
b =2,andd = 2 and illustrating the relationship betweeti nd @ setting parameters
a=1landc=1.5:
<< Table 2 about here >>

When on the brink of war, the challenger's longrtstrategy, embodied in probabilities
of challenges and , affect his decision to escaldten met with resistance by the
defender. The more aggressive the challenger autset, the lower the probability of
escalation to war when on the brink. Thus, as showrable 2 above, the challenger will
escalate the conflict to war with 71% probabilithé chooses to challenge infrequently
in the first place. But he manages the risk oflgagar by accepting to back down more
frequently if, instead, he chooses to challengesthtis quanore forcefully ¢ drops to
0.52whens =1 and= 0.8 ).

The challenger's behavior in equilibrium is sefulthknowledge of the defender's
priorities and capabilities and, therefore, with &iwareness of the defender's response.
The defender holds the prize and enjoys the fofifgpssession, and she will not be

willing to hand it over on demand.
Deterrence and the Defender's Decision to Resist

The defender holds the prize and wants to kedpfew turns of war may be a
price worth paying if the challenger subsequentiyepts thestatus quo, at least for some
time, before challenging again. If challenged,deénder will rationally threaten to

resist with the following probabilities:
with probabilityplzm ifa<c
At SQ2, the defender resi%s (5a)

with probability p,= e ifa>c

1
1-w(1-s))
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At BD2, the defender resis{s (5b)
w(c—a) (1-w(1-s)) ifa>c

{with probability p, ifa<c
w(1+(’,(17w(178)))

with probabilityr,=

with probabilityr, — % ifa<c

At WR2, the defender resis{s (5¢)
with probabilityp, ifa>c

The defender resists with probabilities that delpem the challenger's choice of
probabilitys . Once again setting =  0.99-2, ahd 2 , €dbbives the
defender's response to selected choices for gi@mmeters and

<< Table 3 about here >>
The figures of Table 3 show the defender loweriaggrobability of resistance as the
challenger becomes more aggressive by choiece diis.i a measured response to
aggression that accounts for the likelihood of ssfuly repeated escalation of the
conflict to a war that is costly for both sides.Mdgheless, the defender calibrates her
response according to the costs incurred by thikecigeer. If audience costs of backdown
are high relative to the costs of war for the avadler ¢ = 4, ¢ = 1.5) , then the
defender, anticipating the costs that can be ingpbosethe challenger, will resist more
firmly after a round of costly war (at WR2), butlvtone down her resistance after a
backdown (at BD2). Symmetrically, when= 1 andc = 1.5 , comparison of the
probabilities of resistance at BD2 and WR2 showdender resisting more firmly after
backdown than she does after a fight.

The nature of the defender's strategy is to maehallengeindifferent between
all possible choices af . In view of the defendsttategy, it is equivalent for the
challenger to challenge at SQ1, or to simply actiepstatus quo Thus, general
deterrenceansucceed as a result of the defender's choicesf Bemeral deterrence
fails, and the challenger decides to challengen timenediate deterrence will also fail

with some probability because the defender credhngatens to resist despite the
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possibility of costly war. The logic of rationaltéerence in the class of equilibria that we
investigate here involves spelling out thdure of indm&e deterrence if general
deterrence fails. It is then up to the challengdake the initiative, one way or the other.
Such thinking is apparent among Arab and Israatiées prior to 1967. The credible
threat of Israeli escalation in case of challengs wlearly understood by Egypt's
President Nasser prior to June 1967 (Liebermar5:889). And as Reiser (1994:87)
reports, "He (Nasser) had resisted Syria's callifmremental violence" against
Israel...on the grounds that the Arabs would haveantrol over Israel's escalated level
of retaliation." And Israel's willingness to escaléhe conflict to war if challenged was
clearly articulated in General Yigal Allon's polioy conventional deterrence: "The
deterrence would be made up of astute politicalenaerings andn unknown but
manageable numbef Israeli battlefield victories over anunspecified but reasonable
period of time," (Reiser, 1994:81). Allon's antiipd "battlefield victories" do not
determine an end to the conflict. Rather, they isepoosts on the enemy and lead to
backdown and temporary return to status quo . The implaatem of our rational
strategies would also have such consequences.

The challenger's indifference between challemgkaceptance of thetatus quo
at SQ1 sheds additional light on the figures ofl&&b The challenger's expected payoff
from accepting thetatus qudorever is 0. But, given the defender's response i
equilibrium, he also expects a 0 payoff when cinglieg with probabilitys at SQ1. The
defender's calibrated threat of resistance malkesufficiently likely for the expected
benefits of challenge to match its expected cast#hie challenger. The only possible
benefit of a challenge is the defender's evenuaingssion. But what actually happens if
the defender submits? In our model, the rivals@wibles, and this defines the expected
payoff to the rivals in state SB. At SB, the defendands over the prize but becomes the
challenger of the newtatus quoShe therefore anticipates an expected payoff aifSB

0.18 But what does the challenger expect if the dideindeed submits? At SB he
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expects to be the new defender and therefore pates the same expected payoff as the
current defender at SQ. It turns gsee Lemma 1 in Appendix) t hat the defende
expected payoff at SQ % and, in this class ofléxia, this is the expected

payoff to the challenger at SB. In his new rolelagender, the current challenger expects
his rival to behave with the same level of aggressas measured by , although the
new challenger need not behave identically in herge of probabilityt .

Our rivals can anticipate their changing roles] dreir strategic choices are based
on an evaluation of expected payoffs. But expectdculations mask the variety of
outcomes that could result from an implementatibtine rational strategies that we have
described. Part of the story remains untold. Inigalar, the rational behaviors we
discuss could, with some probability, lead thelgua incur war costs that exceed the
value of the prize. This is the result of the riwgrobabilistic decisions in equilibrium.
Indeed, equilibria in pure strategies could no¢#iten devastating wars for certain since
such a threat would not be credible. This last fp@joins Schelling's discussion of
"threats that leave something to chance,"” but wbdeelling interprets the probability of
devastating conflict as being exogenous or outh@fdecision maker's control, our rivals
choosestrategies that "keep the enemy guessing” (Salgeli960:200). Probabilistic
moves in equilibrium can be interpreted as a statality to wield veiled threats whose
credibility is the result of the possible consequesnof a process that develops in time
and can conceivably lead to long and protractetycosnflict. Schelling (1960:182), in
his discussion of the randomization of promisesthnelats, writes, "it is interesting to
notice that attaching a probability of fulfillmetat our threat is....substantially equivalent
to scaling...the size of the threat." The probabdimoves chosen by our perfectly

informed rivals serve the same purpose. The sitleeothreat is randomized strategically.
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THE ROADS TO RUIN

Our rivals are fully informed, yet they create ertainty about the outcome of the
crisis by choice of strategy. The probabilisticethirof war is one that leads the rivals to
anticipate a range of possible war costs, eachronguvith some likelihood.
Nevertheless, the rivals could both end up enjowistrictly positive payoff when roles
are changed. This can happen if few wars are foaigidugh the conflict remains
unresolved for a long period of time. The defertien enjoys possession for sufficiently
long, and the challenger eventually gets his tarpassession of the prize, having fought
sparingly. But there are other possible outconrepatticular, war costs could
accumulate beyond the discounted value of the pfiais possibility and its likelihood is
part of the defender's deterrent threat of rest&t@dinchallenged. But the consequences of
a challenge depend on how aggressive it is. Thikeclgeer can choose to challenge with
high or low frequency at SQ1, and this will be rastental in determining the outcomes.
While the defender's response makes him indiffdoetween all possible choices for
from a standardx ante expected utility perspective, aesnaggressive stance (higher )
will increase the likelihood that the accumulatedts of war will exceed the value of the
prize. A higher likelihood of ruinous warfare islémaced by the likelihood that the
defender will submit faster, handing over the vhlaasset. The defender's choice of is

informed by an examination of the possible endgatimatsit could determine.

Exploring the Paths to War

Parameter values and choice of strategy deterrhenexpected length of the
crisis and the expected number of turns of war.défee the average frequency of war
as the ratio of these two numbers. The disputenlsegith the challenger's expressed

dissatisfaction with thetatus quo and ends, if general detere fails, when the defender
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submits and the rivals switch roles. Within thisgibly protracted dispute, the rivals can
fight periodically, accumulating a total numbenadr turns. If the challenger is
aggressive, choosing to challenge with high prditglait SQ1, BD1 or WR1, the
conflict will be shorter but more violent. Givenategy, higher war costs on both sides
shortens the duration of the dispute but also reslits violence. Table 4 below provides
some selected data. We set parametess2 b =2 wand.99 anoiex the impact
of changing war and audience costs for the chadleng
<< Table 4 about here >>

Table 4 compares dispute and war durations givaroace fors and thatis
within all the allowable ranges determined by patanvalues. Givea = 0.3 and
t = 0.8, an increase in the challenger's per-period wais¢d — w)c shortens the crisis
and decreases the frequency of in-crisis war. iBhise result of the defender's response
to renewed challenge after a turn of war. Whenhigg, the defender does not need to
resist with as high a probability to impose a gieest on the challenger; comparing
Cases 1 and 2, decreases when increasesagi¥ein nd comparing Cases 3 and 4,
p decreases when increases given 4 . But this alsogrtkahwhen war costs to the
challenger increase, the defender will submit eitther probability after fighting. Crisis
length and overall frequency of war decline assalte A comparison of Cases 1 and 3
and Cases 2 and 4 shows that an increase in tihenaacdost of backdown for the
challenger also reduces crisis length and war &agy This is the result of a subtle
interaction between the challenger's probabilitgsfalationy when faced with a
resisting defender and the defender's probabifitgsisting after a backdown. The data
in Table 4 shows that changes little when audieosts increase, but the defender will
submit with much higher probability after a backaowhen audience costs are high.

A more aggressive challenger determines a shdigpute but a higher frequency
of war given parameter values. For example, a eéhoie = 1,t =1 giveru =1 and

¢ = 1.5 shortens the crisis to 1.79 periods but incretdsefequency of war to 40%.
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Nevertheless, our model predicts that expectedneguencies will remain contained. If
faced with a challenge, the defender respondstgaténing to resist probabilistically.
This comes with a likelihood of escalation to wawt the defender calibrates her
response so that the expected costs of possibfare@are compensated for by the
expected benefits that she continues to receil@engsas she does not give up the
contested asset. At SQ, the defender's expectedfps. In expected terms, the
defender will not submit too soon, and war will betwaged too often. But these are
expectations. Many possible outcomes lie behirgldggregate calculation. An
aggressive Irag, contesting the Algiers accordgsb#ted sovereignty over the Shatt El
Arab, could determine eighty-three months of wahwian, and the dispute, settled in
August 1990 (Huth, 1996), saw the rivals fight mthv@n half of the time. By contrast,
Iran's challenge of the 1937 Accord on the bourdant the very same Shatt El Arab
determined seven brief militarized disputes betwE250 and the signing of the Algiers
Accord in 1975, determining a war frequency for dispute of 20.49%89

The defender's equilibrium response to challerad@nzes out costs and benefits
in expected terms, but this says little about tbesfble paths that a crisis could take as
our rivals implement their equilibrium strategieBhe game begins when the challenger
expresses dissatisfaction with status quo . This is thatgad which he picks a value
for s. The dispute can then be in the public eyeafarile before a full-fledged
challenge, involving a threat of escalation to visgctually issued. For example,
Ecuador's contest of the 1942 Rio Protocol wasomgtpopulist theme domestically
before explicit border challenges led to armed antars in 1953 and 1954. Armed
encounters can then be followed by long period=lative calm before the challenger
challenges again. From 1960 to the border incidehi®78, Ecuador refrained from any
overt militarized challenge of the Rio Protocol ig, 1986:224). Nevertheless, the issue

remained explicitly unsettled despite long periotildétentebetween Ecuador and Peru.
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In our model, the rivals eventually switch rolasd this marks the beginning of a
new game. Parameters and strategy determine tké[gpaths that the rivals could
follow as the dispute evolves from the challengexjsressed dissatisfaction with the
status qudo the defender's submission. Each of the pospddles yields a utility for
each rival that measures the discounted sum offieaead costs received from the start
of the game until the rivals switch roles at SB.illustrate the possible developments
that can emerge as a result of equilibrium playagain setv = 0.9 9, and consider the
following set of parameter values=1 ¢ = 152  andd Mdareover, we
assume that the challenger chooses0.3 tand.8 . A sionlat the dispute
using the strategic probabilities reported in Tabls revealing of the many paths that
could determine the development of this dispite.he Mllowing five paths, described
by the sequence of payoff states visited, are septative of the possible payoff
outcomes to the rivals:

* 01 = {SB} : The defender immediately submits after dlehge. This happens
with probability P(c;) = s x p,= 0.07 given our parameter valud@se utility of this
path is O for the defender and 0.033 for the chghe. The challenger's utility
corresponds to his expectation at SB when he bextimenew defender, and it assumes
that the new challenger will, in turn, challengehaprobabilitys = 0.3 22

*0y = {SQ SQ WR, SQ,SQ,SQ, $B : The challenger decidesitofor two
turns before challenging. The defender therefojeysrthe benefits of possession for the
first two turns. The challenger then challenges, thie conflict escalates to war, but then
the challenger remains at th®atus quo , waiting three tbefsre challenging again.
The defender submits in the face of this secontlesige. The probability of this
particular path i?(o9) = 0.00044, and both challengerdefdnder receive positive
utility from it. Challenger, who has enjoyed thenbéts of possession for five turns,
receives 0.016 while the defender, who does ensliping the prize having fought one

turn of war, receives 0.023.
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* 03 = {WR,WR,WR,SB : The rivals that follow this pathrimadiately escalate
the conflict to war, and fight for three periodddye the defender submits. If this path
obtains, both rivals fight too much relative to tredue of switching roles. Their
discounted utilities, at- 0.013  for the challenger and.059 r thee defender, are both
negative. This is what we refer to as a ruinousaue for both parties. The probability
of this pathP(o3) = 0.003. But the outcome could be rugnfan one and not the other if
the rivals travel paths suchags ogr

+0, ={SQ BD, WR SQ BD BD WR, BD,SB : In this path, the challeng
backs down in the face of a resisting defender rofien than he escalates to war. As a
result, the defender enjoys the benefit of a lbaadkdown more often than she incurs the
costs of war. Her payoff is positive at 0.058 wltlle challenger accumulates audience
and war costs in excess of the expected valueegbize at SB. His payoff is- 0.037
and this path occurs with probabili(c,) = 4.8110°°

* 05 = {WR,SB} : It is now the defender who experiencesgative payoff
outcome. She fights but does not get a chancejoy possession of the contested asset
before submitting. Her payoff is- 0.02  while the chalien's payoff is 0.017. The
challenger gets possession fast and without haweifight very much. This path occurs
with probability P(c;) = 0.025.

The probability of any individual path is typibakmall, but there may be many
ways to fight more than the contested asset ishyortto collect enough rent to cover
any outbreak of war. And this will also depend angmeter values and challenger
strategy. If each of the catastrophic paths cay leappen with minuscule probability,
the probability of catastrophic war could remaimafimven if many paths are associated
to this dire outcome. But this need not be the .dasehat follows we estimate the

likelihood of various payoff outcomes as paramettues and challenger strategy vary.
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The Likelihood of Catastrophic War and Other Payadtcomes

Strategy is an important determinant of the outcéoneur rivals. The challenger
can moderate or enhance the intensity of challeygehoice of probabilities and .
From the perspective of the standard expectedyutdilculation, the challenger is
indifferent between the various degrees of aggvagsiat he can impose on the defender.
But the possible outcomes highlight differencethmrisks that are taken. Indeed, the
challengers' strategic choice, given parametereglwill determine the likelihood of
catastrophic war for each party as well as thdiliked that both parties will switch roles
having survived the crisis with strictly positivaywffs. These are the downside and
upside risks associated with the choices of fand .

To capture the impact of strategy, we estimatedikielihood of various payoff
outcomes using the Monte Carlo method. This isirequecause the probabilities that
we are interested in cannot be calculated expliditie estimated the likelihood of
various payoff events including that of path= {SB},which the challenger
immediately challenges tietatus quo and the defender ssbijt;) can be calculated
explicitly, but by estimating the likelihood ef [srately, we were able to compare one
of our probability estimates to a calculated tratie. In all cases, our 95% confidence
interval for the likelihood oé; contained the truglwe, and this bolstered our confidence
in the interval estimates of the likelihoods ofatipayoff events of interest. Table 5
below provides some data. In all cases is se®&t 0

<< Table 5 about here >>

An aggressive challenger precipitates ruinousavarfor both sides. This is clear
from a comparison of Cases 1 and 2. Increased ¢ enuteases the likelihood that both
challenger and defender will fight so much thaythal end up with strictly negative
payoffs. The challenger fights more than the pisa@orth with 50% likelihood if he

chooses to challenge tetatus quo with certainty at allvah opportunities. By
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contrast, if he adopts restraint and challengels privbabilitiess =t = 0.4 , as in Case 1,
he can expect a negative outcome with only 44.4&iliood2> Aggressive action
increases the downside risk for the challenger. él@w, it also dramatically increases
the probability that the defender will submit rigtway P(o,) = .5whens=¢t=1 up
from P(o,) = .116 whens =t = 0.4).

The increase in the likelihood of a negative oatedor the challenger is part of
the defender's deterrent threat. But this comashégh cost for the defender. If the
defender challenges intermittently choosing ¢t = 0.4 aSase 1, the defender enjoys
a positive outcome with 83.4% likelihood, and withi.8% likelihood she enjoys a
strictly positive utility when the rivals switchles (since she submits right away with
11.6% probability, and this leaves her with O ty)li By contrast, countering an
aggressive challenger, as in Case 2, diminisheddfender's prospects. Now she
receives strictly a positive payoff with 25.1% lik@od only because she submits
immediately half of the time. She also faces a tieg@utcome with higher likelihood
when the challenger is aggressive. This is becdnesehallenger prevents her from
enjoying possession of the contested asset by alal@gllenging with certainty. As a
result, the defender only receives positive pafrofin the challenger's occasional
backdown. Increased war costs, as expected, irectkadikelihood of ruinous warfare
for both sides, as illustrated in Cases 3 and 4aBiomparison of the four Cases of
Table 5 underscores the importance of strategytigenore aggressive increases the
challenger's downside risk more than a doublingi®fvar costs.

In an essay on the comparative merits of theodycase studies, Robert Jervis
writes "The choice between the deductive approadhoae that builds on case studies
involves a tradeoff between rigor and richnesseduttive theory must miss many
facets of any individual case." (Jervis, 1989:184)r theoretical approach to asymmetric
deterrence in time is no exception. Neverthelesspwdel predicts a wide range of

outcomes that are observed in real world settilngg's aggressive posture in the dispute
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over the Shatt Al Arab led to a war whose dired endlirect costs rose to " the
astronomical figure of $1,190 billion" (Hiro, 199): Was sovereignty over the Shatt El
Arab waterway worth this much? For sure, wider éssof Arab nationalism and

religious fundamentalism added much fuel to a dire. But surely war costs
accumulated beyond the value of the contesteddsrriBy contrast, the dispute between
Mali and Burkino Faso over 500 square miles ofitiny, including the mineral rich
Agacher strip, lasted for seventeen years but &schto war on only two brief
occasions. Throughout the period, Burkino Faso heteral rich territory of value. And
Mali's willingness to challenge and escalate th&fla to war eventually led to an even
distribution of the contested territory in 1987 (Hul996:220). It is probable that neither
side fought more than the contested asset was Waxiploited, and the defender
(Burkino Faso) was able to keep possession foryaleag while. Then again, many
disputes do not escalate to war at all. Our defendpproach to deterrence can lead to
all of these outcomes. General deterrence can edagieen our defender's strategy. But
if general deterrence fails, so can immediate dettee, and the consequences can be

ruinous.

CONCLUSION

Our analysis illustrates that unbundling the cahfiutcome changes the nature
of the deterrent threats that fully informed rivaigld against each other. The defender's
strategy in equilibrium makes the challenger iredight between challenging te&atus
guo, with the understanding that war is a possible@ute, or not. General deterrence
success is therefore possible. But if the challengeoses to challenge, then the
defender threatens immediate deterrence failute saime probability. War, more or less
protracted, is threatened probabilistically by fully informed rivals. Their strategic

behavior can therefore lead to rivalries that "quayiodically escalate to the level of
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militarized conflict and can persist in the abseottsuch conflicts for a significant

period of time," (Goertz and Diehl, 1993:156). st our model is suggestive of a
strategic foundation to enduring rivalries and predsome of the observed real world
outcomes. More importantly, however, our analysis{s to the limitations of a one-shot
game analysis of deterrence. If the challengerctatienge thetatus quaepeatedly,
immediate deterrence can fail under the very samarstances that ensured its success
in the one-shot framework. Fully informed rivalgtt costly wars because the defender
will not hand over the contested asset on demarsiibgnitting, but will threaten instead
repeated escalation to war in case of challengd.tAese wars can last long enough to

impose devastating costs.
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APPENDIX

The Markov strategies described in the text deditnsition matrix’ (for each

case of: vs ) between the four payoff stftes SQBEBWR} 26 Ifa < c:

1—s s(1-p) sp(l—q) spq

0 1 0 0
T = Al
1—-t t(1-p) tp(1—q) tpg (AL)

0 1—7r r(l—q) rq

and similarly fora > ¢ by exchanging the last two rowdo For playeri D oC' ),
expectations at these four states satisfy:

E, =U, +JT'E; or [I —wT|E; = U; (A2)
whereU; is the vector af 's payoffs.

Lemma 1Expectations for the challenger ( ) and the defe(bé¢

corresponding to the strategies given by formuBe(@), and (5) in the text are:

1-w

0 1-(1-s)w
= d 0 . ;
E — 1-(1-s)w an E — v |a<c,an
c —(1-w)a D (1-w) (mu;t()i()l;wufs))) <
—(1-w)a IR
1-w
0 1-(1-s)w
1-w 0 .
Ec = T—(I-s)w and Ep= (1= w)b ifa > c.
- (1-w)e
—(1-w)e (1-w) (w(1-0)—d(1-w(1-5)) )

1-(1-s)w
Proof: One verifies (A2) by writing" and; as given in (Adnd the lemma.
For instance, in the cage< ¢ , the first row of (A®)@ reads in dot product form:
<l—-w(l-35), —ws(l—p), —wsp(l —q), —wspg > .< O,ﬁ, —(1-w)a, —(1—-w)a>

= —ws(l— )y +wsp(l —w)a = ws(l — w)(ap — =) =0

sinceap — 1_(11%”% = 0 according tp = p; in section (5a). All other camessimilar8
Q.E.D.
Theorem 1Formulae (3), (4), and (5) in the text provide BB

with p = p1, ¢ = ¢1, andr = r;
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if a <c<at i (A3)
and  withp = py, ¢ = o, and- =1y
ife<a<c+i—  and U <d (A4)

Proof: All formulae forp, ¢, and- must provide true probaleg. This is
obvious forp; ang, . To ensure, for instance, thas a probability one simply solves
the inequalitie® < r; <1 which result in the right-handeesof (A3). All other
conditions are obtained similarly. In addition, anast ensure that Challenge is indeed
best at WR1 inthe cage< ¢ and at BD1 in the ease: n thelfirst case, for
instance, since Challenger's expectation for wgisrE- (1) = 0 the expectation for
challenging must be non-negative, or:

(1=r)Ec(2) +7((1—q)Ec(3) +@Ec(4)) >0 (AS)
This reduces to{1 — rl)% —r(l—wa>0 , ar<c ,afterreplacing asin
(5c). The other case is similar. Moreover, sifigg3) = E-(4) n bath cases of ws
Challenger's use of probabiligy is optimal. FigaDefender's use of probabilitips and
r is optimal provided that:

Ep(2) = (1 —q)Ep(3) + qEp(4) (A6)

In the case < ¢ , for instance, this reads:
0= (1 - ) (1~ w)d

which yields formula (4a) fog; . The other caseifsikr.2° Q.E.D.
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NOTES
Iwar is still a game ending move if the model inelsicin escalation ladder as in Bueno
de Mesquita and Lalman (1992), Kydd (1997) or Zagard Kilgour (2000). In the
asymmetric case fully informed rivals then neveradste to the highest level of conflict
as long as thstatus quo is preferred to war. But in a sytrimease where either side
can challenge, this is not necessarily true as shovBueno de Mesquita and Lalman
(1992:72-75)
2We do not make any claim that our study is exhaeis®ur aim is simply to point out a
range of completely rational interactions that cadicts the conventional wisdom on
when deterrence succeeds.
3In the full information models developed by Slamelf2003) and Garfinkel and
Skaperdas (2000), the accumulated costs of waneagr exceed the value of the prize.
Our model therefore illustrates, as does Flynn 419%e possible catastrophic outcome
of repeated challenge and escalation to war by fafbrmed rivals.
4Goertz and Diehl (1998) develop a punctuated dguilin model of enduring rivalries.
Inspired by the biology literature, these authas the punctuated equilibrium analogy
to interpret enduring rivalries as a stable phenmmnen time interrupted by shocks that
mark the beginning and end of these relationsl8psh a model appeals to evolutionary
ideas but does not address the possible stratgs of rivalry.
SSee also, for example, Vasquez (1995) or KocsF)L68 the importance of territory to
explain war.
6This is true of the models developed by Fearon4299994b,1995), Morrow (1989,
1997), Powell (1996a, 1996b, 1999), Schultz (120®1), and Smith (1998b).
’The model is an extension of the model in SmitRBE) in which the likelihood that the
battle for a fort will be won is exogenous.
8Fully informed rivals have also been shown to clecmsnflict as a result of commitment

problems or indivisibilities. See, for example, fea(1995, 2002).
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9Asymmetric deterrence is understood, following Zagend Kilgour (1993), as a
situation which involves "one decision maker, "Gédier," (who) decides whether to
initiate a crisis involving a second decision maKkBefender." (Zagare and Kilgour,
1993, p.1). The one-shot model we discuss hedergtical to the one examined by these
authors. Our normalization of payoffs is somewh#érent but is designed to facilitate
the analysis of our generalization.

10To our knowledge there is no universally accepéechinology for our game structure.
Although it isinfinitely iterated, it is not a classical "eaped game" since the structure
changes according to prior developments. It is¢t & game on a graph and could also
be called a "stochastic game" because the trandigbween its states defines a Markov
chain.

11Although general deterrence can succeed in this, tasre is no guarantee that the
rivals will not fight. Indeed, one could constregfuilibria based on reversion to extremal
equilibria, (see Slantchev, 2003) in which the iparagree to fight for some time before
returning to thestatus quoHowever, such equilibria are not directly releivinour
discussion of deterrence since they illustrate hoals could be deterred frorefusing

to fight by a threat of reversion to their worstaame.

120ur discussion of the cost of limited war illusesithat it igoer periodpayoffs that are
conceptually important to the rivals in therated gamé&igure 2. Thus, for example,
the challenger considers ther period cost of War w)c adates to(1 — w)a

when deciding on strategy. But comparing theseperiod tsaef course equivalent
to comparing parameters amd directly. In whdbfes we can therefore refer to the
parameter values themselves in discussing strasagye theconceptually relevantper
periodpayoffs are, given , a fixed fraction of these paater values.

13Details of these arguments are available from thleaas upon request.

14The upper bounds for (amd ) are given in Theorgfarinulae (A3) and (A4) in

appendix.
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SWhena > ¢, probabilities and must satisfyz 1 — 1 (1 — w(1 - s))d

16Following (A3) and (A4) in appendix, upper bounds £ are calculated using the

formulas < —— — 1 + 1. Lower bounds far use the formula of famen13.

|c—al
171t might seem surprising that the challenger waidd the very same probabilifgy at all
three nodes of Figure 2 where the decision to aszarises. But this is because of the
simple structure implicit in that figure: we onlystinguish three possible pasts (SQ if
challenger just waited, BD if he just backed doaumd WR if he just escalated). In order
to allow an equilibrium that involves probabilities the defender to resist (at SQ2,
BD2, and WR2), it is necessary to make her indiffiéibetween going to SB by
submitting, with a known resuld ( forever), and gpio each of SQ3, BD3, and WR3.
But her expectation at all three nodes is soletgmened by her expectations at BD and
WR and the probabilities of escalation used byctielenger. So, these probabilities
must be a samg in order to make the defendefenelift with submitting.
18The rivals expectations in each of the four st&@s SB, BD and WR are described in
Lemma 1 in Appendix.
19Consider the case where= 1.5 . Comparing the data ifirfteolumn of Table 4
note that, whem = 1 ,the defender submits at BD2 pittbability ( — p) = 0.33, but
whena = 4, the defender submits at BD2 with probability- ) = 0.85.
20Huth (1996, p.211) reports that Iran and Iraq fdigha total of 41 months between
November 1959 and June 1975 or 20.4% of the time.
21Technically, an infinite number of paths are polgsbut, of course, the probability that
the crisis will develop along a particular path @ases with its length.
22Recall that the challenger's utility at SB-i$—— , which in this case is equal to

1=Ww+ws !

0.01 _
0.01+0.99x0.3 — 0.033.
23tilities are computed as follows: For defende20.6- 01 +,99 x .01 — .99?

x .02 4+.993 x .01 +.99* x .01 + .99° x .0 + 0 since once the defender submits, she
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becomes the challenger and has 0 expected util®BaFor the challenger
0.016=0+0—.99% x .0154 0+ 0+ 0+ .99% x =45 since when the challenger
becomes the new defender at SB he expects a pﬂy@%

244aving consulted Mooney (1997) and Sobol (1994)imgemented the Monte Carlo
method as follows: for each set of parameter valwesgenerated 20,000 paths by
simulating the rivals' equilibrium play. We calcidd the playergx anteutilities for

each path. We first sorted the paths into fouugso paths for which both parties receive
strictly negative payoffs; paths for which the ey received positive payoffs; paths for
which one or the other receives a strictly negapiagoff. Frequencies for each of the
four events were calculated. We also further sulldiv/the group of paths for which the
rivals receive positive utilities by separatinglpat, for which the defender receives 0
utility, from all other paths. In practice both defler and challenger receisteictly
positive payoffs for these remaining paths.(In tigabis possible that one of the rivals
could receive exactly 0 by traveling one of theathp. This would require that
discounted costs exactly compensated for discolgadfits, an event which is highly
unlikely). This process was repeated 1000 timeseating a distribution for the
frequencies of each event. In all cases, with 96%6idence, we were not able to reject
the null hypothesis of a normal distribution (Jadgera statistiec  5.99) . We were
therefore able to construct 95% confidence inteegéimates of the likelihoods of each
of the six events by adding and subtracting 1.86ddrd deviations to each of the means.
2544.4% adds the mean likelihoods in the second aolofthe Case 1 matrix. Since we
cannot reject the hypothesis that the estimatedititkods are normally distributed, we
cannot reject the hypotheses that their sum igeitle can therefore calculate
confidence intervals for these sums. When 0.4 ¢ =,0.4, the 86ffidence interval
for the likelihood that the challenger's utilityssictly negative is [.436, .452]. When
s=1,t = 1 the 95% confidence interval for the likelihabdt the challenger's utility is

strictly negative is [.491, .509]. The two statistare therefore significantly different.
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26Note that SB is treated here as an "absorbing'dtaeends the game although it is in
fact the beginning of a new game with the play&enging hats. This simplifies the
mathematics since the expected value for one pkty8B is simply the expected value

of the other at SQ given the assumed symmetryerivilo games.

0 1
1-w
e = (1-w)| T5F | andUp = (1-w)|
—a
e —d

28Details of all calculations are available from thehors upon request.

29 nequalities (A3) and (A4) are constraints on thlative magnitudes of ard .
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FIGURES

Figure 1: The One Shot Asymmetric Deterrence Game
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Figure 2: The Discounted Iterated Game with Four States
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TABLES

Table 1: Probabilities of Challenge at SQ1, BD1 W1

c=1.5 c=3.0
a=1||AtSQ1l [0<s<1.00 AtSQ1 [ 0<5<0.49
AtBD1 | 0<¢<1.00 AtBD1 | 0<t¢<1.00
At WR1 1 At WR1 1
a=4 || AtSQl | 0<s5<0.39 AtSQ1 | 0<s<0.99
At BD1 1 At BD1 1
AtWR1 | ¢>0.98—2s AtWR1 | t>0.98—2s
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Table 2: The challenger's Probability of Escalatd SQ3,BD3 and WR3

s=0.2 s=1
t=04|¢g=0.71|qg=0.56
t=08|q¢q=0.60|qg=0.52
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Table 3: The Defender's Decision to Resist in @dgehallenge

a=1,

c=1.5

If challenger chooses s = 0.2

If challenger choosess = 1

Defender resists:

Defender resists:

At SQ2 with probability 0.83

At SQ2 with probability 0.5

At BD2 with probability 0.83

ABD2 with probability 0.5

At WR2 with probability 0.74

AWR2 with probabilt 0.24

a=414,

c=1.5

If challenger chooses s = 0.2

If challenger chooses s = 0.39

Defender resists:

Defender resists:

At SQ2 with probability0.76

AtSQ2 with probability 0.63

At BD2 with probability 0.36

ABD2 with probability O

At WR2 with probability 0.76

AWR2 with pobability 0.63
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Table 4: Length of the Crisis and Frequency of Waen a Challenge

s=0.3,t=0.8

Casel c=1.5 Case?2 c=3.0

a=1 At SQ2, BD2p = 0.77 At WR2r = 0.64 a=1 At SQ2, BD2p = 0.77 , At WR2 = 0.29
Challenger escalates with probability= 0.57 Challenger escalates with probability= 0.57
Expected Dispute Length | 6.59 Expected Dispute Length | 5.28
Expected Turns of War 1.44 Expected Turns of War 0.86
War frequency 21.9% War frequency 16.3%

Case3 c=1.5 Case4 c=3.0

a=4 At WR2, SQ2p = 0.68 AtBD2r = 0.15 a=4 At WR2, SQ2p = 0.52, AtBD2r = 0.36
Challenger escalates with probability= 0.  6Q Challenger escalates with probability= 0. 60
Expected Dispute Length | 5.14 Expected Dispute Length | 4.67
Expected Turnsof War 0.77 Expected Turnsof War 0.57
War frequency 15.0% War frequency 12.2%

50




Table 5: Likelihood of ruinous warfare and Othey&f&Outcomes

Impact of Strategy Givena=1,¢=1.5,d=2,b=2

Casel s=0.4,t=04 Case?2 s=1,t=1
Challenger Utility Challenger Utility
Defender Utility >0 <0 Defender Utility >0 <0
>0 [.495, .509] [.321, .334 >0 [.493, .507] [.245,.257
Mean .502 Mean .328 Mean .50 Mean .251
<0 [.050, .056] [.112, .120] <0 No cases [.242, .256]
Mean .053 Mean .116 Mean O Mean .249

P(oy) €[.112, .120] True vaer.116

P(oy) €[ .493, .507 ] True value .50

I mpact of War Costs Given

Strategys =0.4,t =04

Case 3 a=1,¢c=3,d=2,b=2 Cased4d a=1,c=15,d=4,0=2
Challenger Utility Challenger Utility
Defender Utility >0 <0 Defender Utility >0 <0
>0 [.519, .533] [.302, .314 >0 [.526, .540] [.203, .215
Mean .526 Mean .308 Mean .523 Mean .209
<0 No cases [.161, .171] <0 [.064, .070] [.185, .197]
Mean O Mean .166 Mean .067 Mean .191

P(oy1) € [.112, .120 ] True value .116

P(o1) € [.111, .121 ] True value .116
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