Appendix One: Nash's Theorem*

A (finite) game in normal form is defined by a list \(\{1, \ldots, i, \ldots, n\} \) of \(n \) players, a set of pure strategies \(\mathcal{A}_i = \{\alpha^i_1, \ldots, \alpha^i_{k(i)}\} \) for each player, and a payoff function \(\pi_i : \mathcal{A} = \bigoplus_{i=1}^n \mathcal{A}_i \rightarrow \mathbb{R} \) for each player which associates the payoff \(\pi_i(\alpha^1, \ldots, \alpha^n) \) for player \(i \), to any pure strategy \(n \)-tuple \(\{\alpha^1, \ldots, \alpha^n\} \).

A mixed strategy \(x^i \) for player \(i \) is a probability distribution \(\{x^i_1, \ldots, x^i_{k(i)}\} \) over \(i \)'s pure strategies. A mixed strategy \(n \)-tuple \(x = \{x^1, \ldots, x^n\} \) is a list of \(n \) probability distributions (one for each player over that player's pure strategy set). The set \(B \) of all \(n \)-tuples \(x \) is clearly a compact (closed and bounded) and convex subset of the Euclidean space \(\mathbb{R}^n \) with \(m = \sum_{i=1}^n k(i) \).

The expected payoff resulting from a mixed strategy \(n \)-tuple \(x \) is the multilinear extension of \(\pi_i \) (i.e., it is linear in each \(x^i \)). It will be convenient to denote by \(\pi_i(x^i, x^{-i}) \) the expected payoff when player \(i \) uses \(x^i \) and all other players together use the \((n-1)\)-tuple \(x^{-i} \).

We will prove:

Nash's Theorem: Any (finite) game in normal form has a Nash equilibrium.

We will need:

Lemma: \(x \in B \) is a Nash equilibrium if and only if for any \(i \) and any \(\alpha \in \mathcal{A}_i \)

\[\pi_i(\alpha, x^{-i}) \leq \pi_i(x^i, x^{-i}) \] \hspace{1cm} (1)

Proof: Clearly, no pure strategy \(\alpha \) is a better reply than \(x^i \) to \(x^{-i} \) for player \(i \) if (1) holds. Thus, for any mixed strategy \(y^i = \{y^i_\alpha | \alpha \in \mathcal{A}_i\} \) and by linearity for each \(i \):

\[\pi_i(y^i, x^{-i}) = \sum_{\alpha \in \mathcal{A}_i} y^i_\alpha \pi_i(\alpha, x^{-i}) \leq \left(\sum_{\alpha \in \mathcal{A}_i} y^i_\alpha \right) \pi_i(x^i, x^{-i}) \leq \pi_i(x^i, x^{-i}) \] \hspace{1cm} (2)

and \(y^i \) is no better than \(x^i \) in response to \(x^{-i} \). \(Q.E.D. \)

Proof of the theorem: For any pure strategy \(\alpha \), let \(i(\alpha) \) be such that \(\alpha \in \mathcal{A}_i \), and let:

\[u_\alpha(x) = \max \{0, \pi_i(\alpha, x^{-i}) - \pi_i(x^i, x^{-i})\} \] \hspace{1cm} (3)

for \(i = i(\alpha) \). Clearly, \(u_\alpha \) is continuous in \(x \) since \(\pi_i \) is. Further let \(\mathcal{A}(\alpha) = \mathcal{A}_i \) for \(i = i(\alpha) \) and:

\[y_\alpha = \frac{x_\alpha + u_\alpha}{1 + \sum_{\beta \in \mathcal{A}(\alpha)} u_\beta} \] \hspace{1cm} (4)

where \(x_\alpha \) is the probability of \(\alpha \) in \(x \). Evidently, \(y_\alpha \geq 0 \) and \(\sum_{\alpha \in \mathcal{A}(\alpha)} y_\alpha = 1 \). We can thus define \(y^i \) as a probability distribution of components \(y_\alpha \) for \(\alpha \in \mathcal{A}(\alpha) \), and let \(y = \{y^1, \ldots, y^n\} \) be the corresponding \(n \)-tuple of mixed strategies. Moreover, since \(y_\alpha \) is...

*Copyright (c) 1997-2002, Jean-Pierre P. Langlois. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the author.
clearly continuous in \(x \), so is \(y \) as a function of \(x \). Therefore, by Brouwer’s theorem, the continuous map \(\phi : B \to B \) defined by \(y = \phi(x) \) must have a fixed point \(z = \phi(z) \in B \).

We finally verify that \(z \) is a Nash equilibrium. We first observe that for any \(i \) there must exist at least one \(\alpha \in A_i \) such that \(z_\alpha > 0 \) and \(u_\alpha = 0 \). Indeed, were it not the case, we would have \(\pi_i(\alpha, z^{-i}) > \pi_i(z^i, z^{-i}) \) for all \(z_\alpha > 0 \) and thus:

\[
\pi_i(z^i, z^{-i}) = \sum_{\alpha \in A_i} z_\alpha \pi_i(\alpha, z^{-i}) > \left(\sum_{\alpha \in A_i} z_\alpha \right) \pi_i(z^i, z^{-i}) = \pi_i(z^i, z^{-i})
\]

(5)

a contradiction. But if \(z_\alpha > 0 \) and \(u_\alpha = 0 \) for some \(\alpha \in A_i \) then, for that \(\alpha \):

\[
z_\alpha = \frac{z_\alpha}{1 + \sum_{\beta \in A(\alpha)} u_\beta}
\]

(6)

so that \(\sum_{\beta \in A(\alpha)} u_\beta = 0 \) and \(u_\beta = 0 \) for all \(\beta \in A(\alpha) \). It follows that

\[
\pi_i(\beta, z^{-i}) \leq \pi_i(z^i, z^{-i})
\]

for all \(\beta \in A_i \) and for all \(i \). By the above lemma, \(z \) is a Nash equilibrium. Q.E.D.