1. Evaluate \(\int \frac{\cos x}{\sin^3 x} \, dx \)

2. Evaluate \(\int \arctan x \, dx \)

3. Evaluate \(\int x \ln x \, dx \)

4. Evaluate \(\int \frac{x+1}{x^2+2x-3} \, dx \)

5. Find the volume of the solid obtained by revolving the region bounded by \(y = x \) and \(y = \sqrt{x} \) about the \(x \)-axis. Sketch the region and the solid.

6. Let \(R \) be the region bounded by \(y = \frac{\ln x}{x} \), \(x = 1 \), \(x = e \), and \(y = 0 \). Sketch \(R \) and find the volume of the solid obtained by revolving \(R \) about the \(y \)-axis.

7. Evaluate \(\int e^{\sqrt{x}} \, dx \)
 Hint: use two integration techniques successively.

8. Evaluate \(\int \sqrt{1 - x^2} \, dx \)
 by making the trigonometric substitution \(x = \cos \theta \).

9. Evaluate \(\int_0^\pi \cos^4 x \, dx \)

10. Evaluate \(\int \frac{1}{x^2+x-2} \, dx \)

11. Evaluate \(\int \frac{x}{(x-1)^2} \, dx \)

12. Evaluate \(\frac{d}{dx} \int_0^{\sqrt{x}} e^{-t^2} \, dt \)

13. Find the area under the curve \(y = \ln x \) between \(x = 1 \) and \(x = e \).